Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441723

RESUMO

Myriad proteins are involved in the process of autophagy, which they participate in via their protein-protein interactions (PPI). Herein we outline a methodology for examining such interactions utilizing the case of intrinsically disordered protein (IDP) TNIP1 and its interaction with linear M1-linked polyubiquitin. This includes methods for recombinant production, purification, immuno-identification, and analysis of an IDP associated with autophagy, its ordered binding partner, and means of quantitatively analyzing their interaction.

2.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569318

RESUMO

The overactivity of keratinocyte cytoplasmic signaling contributes to several cutaneous inflammatory and immune pathologies. An important emerging complement to proteins responsible for this overactivity is signal repression brought about by several proteins and protein complexes with the native role of limiting inflammation. The signaling repression by these proteins distinguishes them from transmembrane receptors, kinases, and inflammasomes, which drive inflammation. For these proteins, defects or deficiencies, whether naturally arising or in experimentally engineered skin inflammation models, have clearly linked them to maintaining keratinocytes in a non-activated state or returning cells to a post-inflamed state after a signaling event. Thus, together, these proteins help to resolve acute inflammatory responses or limit the development of chronic cutaneous inflammatory disease. We present here an integrated set of demonstrated or potentially inflammation-repressive proteins or protein complexes (linear ubiquitin chain assembly complex [LUBAC], cylindromatosis lysine 63 deubiquitinase [CYLD], tumor necrosis factor alpha-induced protein 3-interacting protein 1 [TNIP1], A20, and OTULIN) for a comprehensive view of cytoplasmic signaling highlighting protein players repressing inflammation as the needed counterpoints to signal activators and amplifiers. Ebb and flow of players on both sides of this inflammation equation would be of physiological advantage to allow acute response to damage or pathogens and yet guard against chronic inflammatory disease. Further investigation of the players responsible for repressing cytoplasmic signaling would be foundational to developing new chemical-entity pharmacologics to stabilize or enhance their function when clinical intervention is needed to restore balance.


Assuntos
Dermatite , Queratinócitos , Humanos , Queratinócitos/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Citoplasma/metabolismo , Dermatite/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430801

RESUMO

Intrinsically disordered proteins (IDPs) move through an ensemble of conformations which allows multitudinous roles within a cell. Keratinocytes, the predominant cell type in mammalian epidermis, have had only a few individual proteins assessed for intrinsic disorder and its possible contribution to liquid-liquid phase separation (LLPS), especially in regard to what functions or structures these proteins provide. We took a holistic approach to keratinocyte IDPs starting with enrichment via the isolation of thermostable proteins. The keratinocyte protein involucrin, known for its resistance to heat denaturation, served as a marker. It and other thermostable proteins were identified by liquid chromatography tandem mass spectrometry and subjected to extensive bioinformatic analysis covering gene ontology, intrinsic disorder, and potential for LLPS. Numerous proteins unique to keratinocytes and other proteins with shared expression in multiple cell types were identified to have IDP traits (e.g., compositional bias, nucleic acid binding, and repeat motifs). Among keratinocyte-specific proteins, many that co-assemble with involucrin into the cell-specific structure known as the cornified envelope scored highly for intrinsic disorder and potential for LLPS. This suggests intrinsic disorder and LLPS are previously unrecognized traits for assembly of the cornified envelope, echoing the contribution of intrinsic disorder and LLPS to more widely encountered features such as stress granules and PML bodies.


Assuntos
Fenômenos Bioquímicos , Proteínas Intrinsicamente Desordenadas , Animais , Proteínas Intrinsicamente Desordenadas/química , Biologia Computacional , Cromatografia Líquida , Queratinócitos/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...